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ABSTRACT 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved 

rapidly into new variants throughout the pandemic. The Omicron variant has more 

than 50 mutations when compared with the original wild-type strain and has been 

identified globally in numerous countries. In this report, we analyzed the mutational 

profiles of several variants, including the per-site mutation rate, to determine 

evolutionary relationships. The Omicron variant was found to have a unique mutation 

profile when compared with that of other SARS-CoV-2 variants, containing mutations 

that are rare in clinical samples. Moreover, the presence of five mouse-adapted 

mutation sites suggests that Omicron may have evolved in a mouse host. Mutations in 

the Omicron receptor-binding domain (RBD) region, in particular, have potential 

implications for the ongoing pandemic. 

 

Keywords: SARS-CoV-2, Omicron variant, mouse-adapted mutation, reverse zoonosis 

  



 3 

1. Introduction 

The current COVID-19 pandemic is a global human health crisis caused by 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). On 26 November 

2021, the World Health Organization (WHO) designated the SARS-CoV-2 variant 

B.1.1.529, named Omicron, as its fifth variant of concern (VOC). This decision was 

based on the evidence presented to health officials and researchers that Omicron had 

numerous mutations with potential implications for the ongoing pandemic. The 

Omicron variant has now been identified globally
1
, including countries throughout 

Asia, Africa, Europe, and North America.  

The original wild-type SARS-CoV-2 strain likely originated in a bat host
2-4

. 

Initially, pangolins were thought to be the source of spillover to humans, but they may 

have been infected by other animal species
5
. Since the outbreak of COVID-19, several 

countries have reported infections of SARS-CoV-2 in animals. Human-to-animal 

transmission has been observed in pets, farmed animals, and animals held in zoos, in 

addition to free-ranging wild animals
6,7

. For example, infections under natural 

conditions have been reported in pet dogs
8
 and cats

9
, in farmed mink

10
 and ferrets

11
, 

and tigers, lions, snow leopards, pumas, and gorillas at zoos
12

. Most diseased animals 

are hypothesized to have been infected through close contact with COVID-19-positive 

human patients. However, no compelling evidence currently shows that any domestic 

animal can readily transmit SARS-CoV-2 to other animals, including humans. Few 

animal cases have shown the potential for further zoonotic and anthroponotic viral 

transmission. Nevertheless, infection in domestic and wild animal species has possible 

implications for public health. 

SARS-CoV-2 enters host cells via the interaction of spike-like proteins (S 

proteins) on the viral surface with the host cell entry receptor angiotensin-converting 

enzyme 2 (ACE2)
2
. Some variants that have mutations in the receptor-binding domain 

(RBD) region of the S protein are VOC because they are potentially associated with 

enhanced transmission, pathogenicity, and/or immune evasion
13

. Although the initial 

wild-type strain of SARS-CoV-2 does not infect mice, mouse-adapted SARS-CoV-2 

strains have been identified. Several mouse-adapted strains have mutations located in 

the RBD region, enhancing interactive affinities with mouse ACE2 (mACE2)
14

 to 

facilitate efficient viral replication in this host. A mouse-adapted strain at passage 6 

(MASCp6), which has an N501Y mutation, was shown to have increased infectivity 

in the lung during serial passaging in BALB/c mice
15

. Another study showed that 

three SARS-CoV-2 VOCs, namely B.1.1.7 and two other N501Y-carrying variants, 

B.1.351 and P.3, can infect mice
16

. 

In this study, we constructed a phylogenetic tree of all known VOCs and 

variants of interest (VOIs). The results showed that the Omicron variant was not 

present on an intermediate evolutionary branch, suggesting that it may have evolved 

in a non-human host. Analysis of Omicron mutation data revealed a high number of 

mutations, that these mutations are concentrated in the S protein (specifically the 
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RDB region), and that Omicron has five mouse-adapted mutation sites. Together, the 

data suggest that Omicron may have evolved in a mouse host. 

 

2. Materials and methods 

 

2.1. Data collection 

We downloaded a representative set of SARS-CoV-2 genomes from individuals 

infected during the COVID-19 pandemic from the GISAID database
17

. The genomes 

had complete metadata, including patient age and sex and the year and country in 

which samples were collected. These data were used to test associations between 

variation in SARS-CoV-2 genomes and available epidemiological metadata. 

 

2.2. Mutation analysis 

The complete genome of SARS-CoV-2 isolate Wuhan-Hu-1 (NC_045512.2) 

was used as the reference genome
18

, and mutations in all other samples were 

compared with this reference isolate. Detected mutations were confirmed with 

Integrative Genomics Viewer (IGV) and annotated with the SnpEff program
19

. 

 

2.3. Construction of a phylogenetic tree with full-length genomic sequences 

The full-length genomic sequences of VOCs and VOIs used in this analysis 

included 30 each of the Alpha, Beta, Eta, Iota, Mu, Kappa, Zeta, Theta, Epsilon, and 

Omicron variants. There were also 28 Gamma, 98 Delta, and 29 Lambda variant 

genomes included. All 455 genomes were aligned using MAFFT v7.31023
20

. The 

aligned sequences were converted to the phylip file format with Clustal W
21

, and 

maximum likelihood (ML) trees were then constructed in RaxML v8.2.12
22

 with 100 

bootstrap replicates. The time-scaled phylogenetic trees were constructed using 

NextStrain
23

 and Treetime
24

 and visualized with FigTree v1.4.4
25

.  

 

3. Results and discussion 

 

3.1. High number of mutations 

We calculated the average number of mutations in the five VOCs circulating 

globally and found that the Omicron variant has significantly more mutations than any 

other variant currently in circulation (Table 1). This observation suggests that the 

environment in which Omicron evolved may differ from other known VOCs that have 

infected healthy human hosts. The Omicron variant likely evolved in an 

immunocompromised patient, although it is possible that this variant also evolved in 

an animal host. 

 

3.2. Key mutation positions 

The RBD region recognizes ACE2, the host receptor that binds to the viral S 

https://www.nature.com/articles/s41598-020-79484-8#ref-CR23
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protein
26

. Mutations in the RBD region may increase the binding affinity and viral 

infectivity. Furthermore, most vaccine-induced neutralizing antibodies and antibody 

treatments target the RBD. The Omicron variant has at least 15 mutations in the RBD 

region, including mutations at Q493 and Q498 (Fig. 1), which are especially 

concerning to public health experts. Studies have shown that mutations at these two 

sites are related to the infectivity of animals. In 2021, the Jin research team showed 

that strains with the Q493K and Q498H mutations have significantly enhanced 

affinity toward mACE2
14

. In a study of New York sewer samples published in July 

2021
27

, researchers found many variants with the Q493K and Q498Y mutations, 

which were rare in clinical samples. At that time, only three reported strains of SARS-

CoV-2 had the Q498H mutation, and none had the Q498Y mutation. This study 

showed that by July 2021, the Q498 mutation had accumulated in large numbers of 

animal hosts living in the sewers of New York, and the authors discussed the 

possibility of SARS-CoV-2 spreading between non-human animal hosts. A CSIRO 

study additionally identified seven key mutation sites potentially related to mACE2 

binding affinity. In the S protein, these sites are K417, E484, F486, Q493, Q498, P499, 

and N501
28-31

. We compared key mutations in 13 mouse-adapted strains with the 

Omicron variant (Fig. 2). The results showed that the Omicron variant contains 

mutations at five key sites of viral S protein: K417, E484, Q493, Q498, and N501. 

Notably, another strain had mutations at the same five sites, the IA-501Y-MA-30 

strain, which was obtained from mouse lung samples after 30 passages of the IA-

501Y strain
32

. These results suggest that the Omicron variant may have evolved in a 

mouse host.  

 

3.3. Phylogenetic analysis of VOCs and VOIs 

Despite a large number of mutations in Omicron, no evidence was found in 

known public databases to suggest that these mutations slowly accumulated over time. 

Additionally, phylogenetic trees showed no intermediate branches of evolution, which 

is a very surprising result. Starting in August 2021, the Delta variant was dominant 

globally, and until November 2021, 99.6% of all collected specimens causing new 

infections were identified as Delta (Fig. 3A). If Omicron evolved from a strain of the 

Delta variant, such as AY.4, AY.23, or AY.46 (the dominant variants in Europe, Asia, 

and Africa, respectively), they would share a common mutation profile. However, 

analysis of data from GISAID showed that the Omicron variant differed from each of 

these strains and did not evolve from the Delta variant (Fig. 3B). The phylogenetic 

analysis strongly indicates that the Omicron variant forms a monophyletic group with 

the Gamma variant as a sister group, and the Omicron group has an extremely long 

branch length. The time-scaled phylogenetic tree shows that the Omicron and Gamma 

lineages likely diverged in the first half of 2020. This supports the hypothesis that 

Omicron may have evolved in a non-human animal species. After accumulating many 

mutations in the animal host, the altered coronavirus was transmitted back to humans 
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by reverse zoonosis. 

 

The emergence of the Omicron variant indicates that surveillance of SARS-

CoV-2 variants should be conducted in economically underdeveloped countries and in 

the environment to avoid the continuous emergence of new variants of unknown 

origin. Understanding the threat posed by the Omicron variant will require researchers 

to gather and analyze a great deal more data in a brief period. Determining the origin 

of Omicron requires surveillance of animals, especially rodents, because they may 

have come into contact with humans carrying a strain of the virus with adaptive 

mutations. Future work should focus on SARS-CoV-2 variants isolated from other 

wild animals to investigate the evolutionary trajectories and biological properties of 

these variants both in vitro and in vivo. If Omicron is determined to have been derived 

from animals, the implications of it circulating among non-human hosts will pose new 

challenges in the prevention and control of the epidemic. 
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Figure captions 

Fig. 1. Mutation profiles of the five variants of concern (VOCs) designated by the 

World Health Organization. Common mutations are marked in red. Many mutations 

in the Omicron variant are unique when compared with mutations in other VOCs. 

 

Fig. 2. Seven key mutations among 13 mouse-adapted strains and the Omicron variant 

of SARS-CoV-2. IA-501Y-MA-30 is a homogenate obtained from mouse lung after 

30 passages of the IA-501Y strain. 

 

 

Fig. 3. The abundance of different SARS-Cov-2 variants by percent of new infections 

from a public database (A). Evolutionary analysis shows that the Omicron variant did 

not evolve from the Delta variant and differs from other variants (B). 

 

Tables 

Table 1 

The average number of mutations per sample in each VOC is based on publicly 

available datasets. 

 

Variant Average number of mutations 

Alpha 29.7 

Gamma 29.1 

Beta 28.4 

Delta 35.4 

Omicron 53.3 
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